Turn Courses Into Machine-Readable Intelligence

Search, audit, and update curriculum at scale. Built for Learning Engineering teams.

79.3%

<200ms

60%

12x

NDCG@10 Retrieval Quality P95 Latency Real-time Search Reduction SME Costs Faster Updates 6-12mo → 2wk

The Learning Engineering Crisis

Every learning platform faces the same challenges: **Content velocity** outpaces manual audits. **Catalog sprawl** makes search useless. **SME bottlenecks** create 6-12 month update cycles. Students expect ChatGPT-grade search while you deliver 2015-era keyword matching.

40-60% of catalog content

is stale or outdated

6-12 months

lag between breaking changes and updates

\$500K+

annual SME cost for manual maintenance

The Solution: A Learning Intelligence Layer

Infrastructure that treats curriculum as **structured**, **queryable**, **version-controlled data**. Not files. Not videos. **Intelligence**.

Multi-Modal Processing

- Video: Whisper ASR + Scene Detection
- Slides: PDF Processing + OCR
- Code: Multi-language Analysis + AST

State-of-the-Art Retrieval

- Multi-Vector Embeddings (BGE-M3)
- HyDE Query Enhancement
- Reciprocal Rank Fusion

SOTA Benchmark Results

Tested on CS50 curriculum (Harvard). Validated against gold-standard evaluation methodology.

Metric	Mixpeek	Vector Only	BM25	Target
NDCG@10	79.3%	68.2%	54.7%	>75%
Recall@50	80%	65%	52%	>90%
Latency p95	<200ms	~50ms	~30ms	<200ms

What You Can Build

Content Freshness Engine

Automatically detect when libraries, APIs, or vendor docs change. Flag outdated lecture segments without manual audits. Surface exact timestamps for SME review.

\rightarrow 60% reduction in maintenance cost

AI Tutor Grounding Layer

Power LLM-based tutors with retrieval grounded in your actual curriculum. No hallucinations—every answer cites exact lecture moments and slide numbers.

→ Trustworthy course chatbots

Lecture Segment Search

Enable semantic search across millions of lecture minutes. Students find exact answers in seconds instead of opening support tickets asking "where is X explained?"

→ 40% reduction in support load

Taxonomy Alignment

Generate topic maps, skill tags, and learning objective metadata automatically. Build a curriculum graph showing which lectures cover "async/await" or "gradient descent."

→ Skills mapped at scale

Built For

Learning Engineering Teams at Coursera, LinkedIn Learning, Pluralsight • **Content Tech / Platform Teams** at O'Reilly, Udacity, Khan Academy • **Certification Programs** tracking AWS, Azure, GCP changes • **Enterprise L&D**; centralizing Loom, Zoom, onboarding decks

How It Works

- 1. INGEST → Video lectures, slide decks, code examples, documentation
- 2. EXTRACT → Whisper ASR Scene detection OCR Code analysis
- **3. EMBED** → Multi-vector: transcript, code, visual, bound context
- **4. INDEX** → Vector store (Qdrant-ready) with metadata filtering
- **5. RETRIEVE** \rightarrow HyDE enhancement \rightarrow Multi-vector search \rightarrow RRF
- **6. SERVE** \rightarrow <200ms responses with timestamps, slides, code

Example: Semantic Search in Action

```
Query: "What is memory allocation in C?"
```

[1] Score: 0.8234 • Scene: 120.5-185.3s • Course: CS50 Lecture 4

"Memory allocation in C allows you to dynamically request memory from the heap using malloc..."

```
Code: char *s = malloc(4); strcpy(s, "hi!");
```

Why Standard RAG Falls Short

Educational content requires specialized processing that general-purpose RAG can't deliver:

Temporal Misalignment

LLMs can't understand when concepts appear in 90-minute lectures

Multi-Modal Context Loss

Code on slides + audio explanation gets lost in single-vector search

Code Semantic Blindness

General embeddings don't understand imports, APIs, or structure

Yague Query Handling

"memory stuff" doesn't match exact transcript text without HyDE

Mixpeek Solution

- Scene detection with word-level timestamps ensures precise temporal alignment
- Multi-vector representation maintains separate embeddings for each modality
- Specialized code embeddings (StarCoder/SFR) with AST analysis
- / HyDE generates hypothetical explanations to improve query-content matching

15-20%
Better retrieval vs
single-vector

<200ms

Multi-vector
fusion latency

95%+ Scene-transcript alignment

Start a Learning Intelligence Pilot

2 weeks. One slice of your catalog. See what's possible.

No vendor lock-in. Open benchmarks. Production-ready infrastructure.

Trusted by Learning Engineering teams managing millions of lecture minutes at Coursera, LinkedIn Learning, and enterprise academies.

mxp.co/learning

ethan@mixpeek.com